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! Preface

The purpose of this study was to develop a technique

for Mode Il fracture testing of small composite specimens.

The technique could be varied for uses with othe: fracture
modes and for high temperature applications.

At this opportunity, I would like to express my
gratitude to my thesis advisor, Dr. S. Mall for his advice
and guidance.

I would like to extend a special thanks to Dr. T.
Nicholas, of AFWAL/MLLN, and his staff of engineers. Larry

P. Zawada provided extensive help with composite fabrication
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and post mortem analysis. Stephan Russ provided guidance on

specimen preparation. Jay R. Jira's help was instrumental in

getting the laser interferometry up and working.

1 deeply thank my wife, Diane, for the typing,

encouragement, patience and understanding she showed during

the time of this study.

Robert P. Vozzola
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w Abstract

Qghe need for an accurate fracture toughness testing

il

9

technique for fiber reinforced ceramic composites was
identified. A technique was developed to measure small crack

mouth displacements over small gauge lengths of small glass-

7 I

ceramic composite specimens during loading. The technique was

b =2

applied to Mode II crack prépagation. A loading fixture capable
of exerting and measuring small loads was developed. A

technique to measure compliances in small composite specimens

-

was perfected. The validity of using a laser based
interferometric technique to determine the instant of crack
initiation was studied. Finally, the Mode II critical strain
energy release rate of interlaminar delamination growth was
evaluated. Sample results for a 1723 glass matrix, silicon

carbide fiber composite are included and recommendations for

T

further study are described.(‘\"\n So SB.
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I. INTRODUCTION

Problem

As new technologlies push material usage closer to
their physical limits, fracture mechanics has become an
important tool in the design process. The durability of a
part or structure is often directly related to a
material's resistance to crack initiation and growth. By
accurately predicting stable crack growth behavior, the
usable life of a component can be assessed quantitatively.
This aids the engineer in both his design selection and
maintenance scheduling.

Griffith (1,2) provided the basic concepts of
fracture mechanics in the 1920's and Irwin (3) and others
followed on his work in the 1940's and 1950's. The early

work was done with homogeneous isotropic materials, first

with glass and then with metals (4). In recent years,
composites have received an increasing amount of
attention. Any analysis of composites is difficult due to
their non-homogeneous and anisotroplic nature (5).

With the high temperature requirement for new
engines, new materials are needed. Researchers have sought
to develop tough ceramics whose performance character-
istics retain the best properties of their parent
ceramics and have the additional quality of not being

susceptible to fracture (6-9). The development of fiber
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reinforced glass-ceramic matrix composites is one of the
best examples in this direction.

Since the motivation for developing these ceramic
composites is to utilize their high toughness in
étructural applications, an accurate fracture toughness
measurement technique is needed. There is a standard
procedure recommended by the American Society for Testing
and Materials (ASTM) for finding the fracture toughness
for metals at room temperature (10). No such procedure
exists for fiber reinforced ceramic composites.

According to Jenkins (11), "Fracture testing of
structural ceramics is complicated by the lack of an
accurate technique for measuring the small crack opening
displacement. This 1s further complicated by the small
crack sizes which are associated with specimens at
failure". Further, the composite specimens avajilable for
testing are small due to the limited availabllity of
material. In addition, fracture testing at very high
temperatures is required since these ceramic composites
are being developed for high temperature applications.

Kobayashl and Jenkins were able to determine specimen
compliance and fracture toughness parameters using a laser
interferometric strain gauge (11,12). The laser
interferometric strain gage (LISG) measures small
displacements of the order of microns over small gauge

lengths. Sharpe (13-16) was one of the ploneers in using

'
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this technlique for measuring crack surface displacements.

In the past, this technique was primarily used with
metallic specimens that had good reflecting surfaces. Due
to the low reflectivity of most ceramic and glass
composites, this technique has not been commonly used for
these materials. To get around this problem, metal tabs
have been glued onto the composites and the indents were
placed on the tabs (12). The majority of this work has
been applied to Mode I crack opening.

With composites, fracture due to crack growth in
shear sliding Mode 11 or Mixed Mode I and II is of a
potentially greater significance. This is particularly
true with unidirectional fiber reinforced composites. The
composite fibers serve as obstructions to Mode I fractures
perpendicular to the fiber direction. However, cracks
oriented parallel to the fibers can propagate and fail
catastrophically in Mode II. To model the Mode I1I
fracture, a three point bend configuration is used. The
end-notch flexure (ENF) specimen has been successfully
used to measure GIIc' the critical strain energy release
rate of interlaminar delamination growth in composites
(17).

The flexure specimen is a beam with a crack located
on the neutral plane at one end. The beam is subjected to
three-point bending. Mall (18), used this type of beam
when he investigated Mode Il failure of composites using a
finite element technique. Giare (19) measured Mode II

3
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@E fracture toughness using a clip gauge to measure relative
displacement of a crack surface on an end-notch flexure
.3 specimen. He was able to apply Linear Elastic Fracture
§ j Mechanics (LEFM) to a unidirectional glass fiber
- reinforced composite material in Mode II. A good technique
_‘ E is still needed that can accurately predict Mode I1
% N fracture at a wide range of operating temperatures.
‘ 35' Objective
E The objective of this study was to develop a
technique to measure small crack mouth displacements over
T &E a small gauge length of a small glass-ceramic composite
: > specimen during loading. The technique was specifically
b Ei applied to Mode I1 crack propagation. The utility of this

technique was demonstrated for room temperature fracture

A

testing of ceramic composites. A variation of the

e .

technigque could also be used effectively at elevated

RN A
¥

temperatures in the future.

b

Approach

The experimental program involved several aspects.

P VD Y

s
2
First, a loading fixture capable of exerting and measuring

t
R ' small loads was developed. Measurement of the load point
R
: displacements was also incoporated into the apparatus.
¢ BN
. w! Next, a technlique to measure compliance in small composite
L}
X g; specimens was perfected. Then a laser based
R L%
f * interferometric technigue was used to measure crack
K
y E opening displacement and to determine the instant of crack
. initiation. Finally, the Mode II fracture of a
s ;E 4
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ﬁ unidirectional glass matrix composite was investigated

rx

using the technique and hardware that was developed by

using the end-notch flexure specimen.

The composite used was a 1723 Corning glass matrix

b *

with silicon carbon yarn as reinforcing fibers. This

s ceramic composite is currently being developed and studied
by engineers at the Air Force Materials Laboratories. The

& results of this study provide an accurate experimental

&: tool to perform fracture toughness testing of many

~ structural composites in a variety of conditions.
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I1. BACKGROUND

Griffith developed one of the basic theories of
fracture mechanics in the early 1920's (1,2). Griffith
used brittle glasses to derive equations for crack
propagation. His equations were based on the idea of
critical energy release rate. He stated that "crack
propagation will occur if the energy released upon the
crack growth is sufficient to provide all the energy that
is required for crack growth (4)".

The field of fracture mechanics took on greater
importance in the 1940's and 1950's with the increased use
of high strength materials. Irwin (3) applied fracture
mechanics to metals. He did extensive studies on the
effects of stress on the crack tip and the crack tip
plastic zone size. Broek (4) presents a good history of
the basic problems and concepts of Linear Elastic Fracture
Mechanics in his book. The bulk of these works, however,
deal with homogeneous isotropic materials such as metals
and simple glasses.

Composites are non-homogeneous and anisotropic in
nature. This complicates any analysis of composite
materlals. The basic mechanics of composite materials are
described by Jones (5). Many of the new composites are

being developed for high temperature applications in

today's engines.
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One of the areas of study for these applications ls
tough ceramic composites. The toughening mechanisms for
ceramic composites were described by Jelinek (20). Jelinek
lists three methods of toughening ceramic composites: 1)
increase the local driving force necessary to propagate
cracks to falilure, 2) locally increase the mechanical
energy consumed per unit area of propagation of any crack,
or 3) decrease the local strain by cracking, which reduces
the stress concentration. Jelinek also lists six ceramic
matrix composite toughening concepts.

The Ceramic Bulletin (21), provided information on
processing techniques for fiber-reinforced ceramic matrix
composites. The article deals with properties and
processing of several composites, but concentrates mainly
on silicon carbide reinforced glasses and composites. The
article discusses processing from the initial slurry,
through hot pressing and includes information on future
needs and directions.

The Naval Research Laboratory has done work on
refractory-ceramic fiber composites (22).'The engineers at
the Research Laboratory present the significant
opportunities, problems, and possible solutions associated
with ceramic fiber composites. Processing, mechanical
properties and limitations of the composites were all

discussed.
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Hasselman (23-25), d4id extensive work in ceramic

E

composites. His works concentrated in the areas of thermal
shock and thermal stress fracture. He stated that

talloring of material properties could be achieved to

o -,

improve resistance to fracture initiation and resistance
to crack propagation. This was achieved by adding
substances to the matrix of a composite.

Kelly (26), used Hasselman's theories to study the

influence of the addition of silicon carbide whiskers and

¥ 555 S

zirconia on the material properties of a parent ceramic.

~y

B

Valentine (27), also followed some of Hasselman's

techniques in the study of strength and thermal shock

behavior of a ceramic composite. Valentine compared

results based on varying compositions of a particulate and

e

varying temperatures up to 1500°C. Both Kelly and

Valentine characterized the microstructures of the

LA

composites that resulted from their experimentation.

One of the acknowledged experts in the area of glass-
ceramic matrix composites is Dr. Karl Prewo. He has done
extensive research at the United Technologies Research

Center and he has published numerous articles on

= o= YR

reinforced glass matrix composites and glass ceramic

-3

matrix composites (7-9, 28-36).

Prewo has completed a series of reports for the

<
A

National Aeronautics and Space Administration on Research

on Graphite Reinforced Glass Matrix Composites. In these

%

reports Prewo describes composite fabrication procedures,
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composite characterization procedures, and the results and

discussion of those procedures.

Prewo described three point flexural strength, creep

and fatigue tests for several glasses, including

e

- aluminosilicate glass composites. He found that the glass

and glass-ceramic matrix composites to show great promise

for high temperature applications. He did not, however, do
any Mode Il testing with end-notch flexure specimens.

Prewo did a range of tests and property studies at

A B %58

¢ high temperatures up to about 1000°C. He noted, "The

"' E predominant mode of failure from room temperature to 600°C
: 4

A

5 ‘e is local delamination of the composite along the fiber
[

direction, indicative of a weak bond at the fiber matrix

interface" (33).

>
>

: Additional fabrication information was provided by

e ‘o
L

Mr. Larry Zawada of AFWAL/MLLN (37). Mr. Zawada has been
N experimentally preparing small samples of the 1723 glass
matrix composite. He has also been involved with

mechanical property testing of this ceramic composite.

X B

There are several sources which deal with fracture

K gg toughness testing. The American Society for Testing and
K

. S Materials (ASTM), has several sources for metallic

Q g materials (10,38). ASTM also published guidelines for
’Q e flexural tests of plastics and electrical insulating

L) i-.

3" Materials (39).
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Kobayashl has detalled experimental techniques in
fracture mechanics (40, 41). He describes compliance
measurements, testing systems and instrumentation, mixed-
mode stress intensity factors, laser interferometry and
many other fracture mechanics testing techniques.

Kobayashl also served as an advisor to a doctoral
student, M.G. Jenkins. The two collaborated on several
articles and a dissertation on short crack growth of
ceramic composites (11,12,42,43). Jenkins and Kobayashi
performed Mode I tensile testing on a number of metals and
ceramics. The result of their study was the development of
& technigque for fracture toughness testing of ceramics.
Jenkins used a laser interferometric strain gauge to
measure crack mouth opening displacements at high
temperatures. He perfected a technique of indenting small
metal tabs that were affixed to the ceramic specimens. He
was able to measure compliance, work of fracture, and
crack mouth opening displacement. The compliance was used
to calculate an effective crack length and the crack
growth resistance. This led to determinations of the
stress intensity factor KI, and the strain energy release
rate GI'

The laser interferometric strain gauge was
extensively tested by Sharpe (13-16, 44-48). For the past
twenty years Sharpe has used laser interferometry for
various applications of displacement measurement. He has
used a metal tabbing technique for room temperature

10




testing of graphite-epoxy components. He did preliminary

work on the applicablility of the measurement of

/| 5o

displacements parallel to a crack in a composite specimen.

Sharpe found that the LISG measurements parallel to the

2z

crack were crude and only approximate. Sharpe also did
high temperature work on displacements over short-gauge
lengths. The majority of Sharpe's testing concerned
fatigue crack growth.

Locally, Bar-Tikva used laser interferometry in his

thesis work on an experimental weight function method for

B 2R &R =8

stress intensity factor calibration (49). Bar-Tikva used

the LISG to find stress intensity factors of four-point

==

bend specimens. A computer program was then used to
construct a weight function. Bar-Tikva (50), combined with
Grandt and Palazotto in a presentation of the results and
conclusions that were drawn from the previous work on the

weight function.
Mr. Jay Jira, an engineer of the Metals and Ceramics

Division, AFWAL/MLLN, completed a computer program to

& AR X s

record and process the fringe input from the laser

g

Q; interferometric strain gauge (51). His work is on-going in
this field in the area of fatigue crack growth in metals.

E Jira's program was originally intended for Mode I

E.p fracture.
5 The majority of the laser interferometric work has

E been with isotropic materials. It has been proven very

reliable for measuring small displacements in these

5
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materials. The use of the LISG with composites, especially
in Mode II fracture, is fairly new.

According to Jones (5), the effect of a transverse
shear may be more important for laminated composites than
for isotropic materials. This view 1s strongly supported
by Giare (19). Giare studied Mode II failure of reinforced
composites. He used clip gauges to measure the crack mouth
opening displacements versus load. These measurements led
to the measurement of critical Mode II stress intensity
factor. Giare showed that the crack growth resistance
curve is a material property and that linear elastic
fracture mechanics applies well to unidirectional glass
fiber reinforced composite materials in Mode II fracture.

Mall (18), applied a finite element analysis to an
end-notch flexure specimen in Mode II. He investigated the
effects of overhang on the Mode II straln energy release
rate.

Finally, once all the testing has been completed the
fractures must be examined and understood. Wiederhom (52)
investigated brittle fracture in ceramics. He stated that
the fracture behavior of metals and ceramics were
different. Fracture in ceramics was controlled by the
microstructure on the crack tip. Lankford (53) completed a
report on damage mechanisms in ceramic composites.
Lankford tested glass-ceramic matrix composites reinforced
with silicon carbide fiber. He tested unidirectional and

multiaxial reinforced composites in compression. His

12
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damage characterization goes to the microscoplc level.
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Marshall (54) studied fallures during both tensile and

flexural loading.
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II1. EXPERIMENTAL PROCEDURE

The experimental procedure involved fracture testing
of straight-notched, pre-cracked, end-notch flexure
specimens of unidirectional fiber reinforced beams at room
temperature. The beam was composed of 1723 Corning glass

matrix (see Table I) with a silicon carbide yarn fiber

B X8 2 O K =

(see Table 1I). Appendlix A describes composite fabrication

and shows a photograph of the ceramic composite's fiber

=3

and matrix. A linear variable displacement transducer

=2

(LVDT) and loadcell were used to monitor the load vs. load

point displacement during load application-and subsequent

y

t? fracture. The resulting load vs. displacement curves were

ﬁ used to calculate compliance vs. crack length curves. The
laser interferometric strain gauge was used to monitor

E crack opening displacement. The values of displacement vs.

load were used to determine the critical load accurately.
The specimen geometries, pre-cracking, loading apparatus,
compliance technique, laser interferometric strain gauge,
reflective tabs and output are discussed separately in the

Specimen Preparation

@ following sections.
2

An end-notch flexure specimen was used in this study.

?; The overall dimensions of the beam were 2.0 x 0.30 x 0.20

inches, with a notch width of approximately 0.010 to 0.015
inches, and a testing span of 1.50 inches. The dimensions

of each specimen were measured with a micrometer and were

K
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TABLE 1

Properties of Corning 1723 Glass

Constituents

5102

B,0,

Al,0,
Cao
Bao
Mgo

As O

Strain point (°C)

Annealing point (°C)

Softening point (°C)

Working point (°C)

Melting point (°C)

Nominal Composition (Wt.%)

15

56.8
4.3
15.5
10.0
6.0
6.9

0.5

665
710
908
1168
1550
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& Table II (34)

Materials Used to Reinforce Glass and
Glass-Ceramic Matrices

|
Ultimate Thermal |
tensile expansion (
strength coeffic. |

|

LW

Diameter Density E
& Material (Pm) (g/cm ) (GPa) (GPa) (1076/°c)
Boron mono- 100-200 2.5 400 2.75 4.1
g filament
Silicon carbide
- mono-filament 140 3.3 425 3.45 4.4
Y
0 Carbon yarn 7-10 1.7- 200- 1.4- -0.4 to
2.0 700 5.5 -1.8
o
il Silicon
carbide yarn* 10-15 2.55 190 2.4 3.1
tﬁ FP alumina
ve yarnk* 20 3.9 380 1.4 5.7
ﬁ Alumino-boro-
silicate yarn+ 10 2.5 150 1.7
"j VLS-8icC
é‘ whisker++ 6 3.3 580 8.4

*Nicalon, Nippon Carbon Co. Tokyo, Japan

**E.I. Du Pont de Nemours & Co., Inc. Wilmington, DE
+Nextel 312, 3M Co., St. Paul, MN

++Los Alamos National Lab, Los Alamos, NM

LS.
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oh
all within two percent of the stated values. Figure 1

’ defines the dimensions for the specimen. The machined
notch length varied from 0.1 to 0.2 inches and was

W

‘.l

oY followed by various lengths of precracking. The beam

% thickness corresponded to a forty ply lay-up of the glass

composite. The material fabrication is explained in

appendix A. The beam width was chosen from previous

=

experiences with this composite by engineers in the Air

Force Materials Laboratory.

ner R &A
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\
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Figure 1. Specimen Dimensions

The notches were cut using a liquid cooled diamond

wheel saw. The resulting notch widths were 0.010 to 0.015

TR OERA

inches. The notches were cut at the edge of the beam at

O

half of the height. This would correspond to the location
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; of the beam's neutral plane. The fibers run parallel to

t' n this plane and notch.

s‘.% Pre-cracking

. :i In order to create the natural crack front for

.' q accurate fracture toughness measurement, the machined

h - nctch was extended by precracking it before conducting

:: ﬁ actual tests. A white palint was applied on one side of the

specimen from the notch to the back edge. The white paint

allowed for easier monitoring of crack growth on the black

£Ex

D SIS

pred

fibrous composite. A straight razor was used to cut a

{ sharp crack in the center of the blunt notch tip. After

the desired crack length was decided and the location

A marked with a thin pencil, a transverse load was applied

.
.

at this point. The compressive load was applled by using a

small one inch metal C-clamp. To ensure that the trans-

ARt

verse load was applied at the desired point, two one-

- -

quarter inch wide strips of metal were precisely

i

3 ) positioned between the sides of ceramic specimen and the C-
: F; clamp (see Figure 2). The strips ran from the rear of the
n i specimen to the point where the crack was intended to
? N arrest. The strips were used to more evenly distribute the
? RN load from the C-clamp and the create a track for the
.‘53 possible movement of the load location. For all practical
f & purposes, the pre-crack was arrested at the desired point.
-
: £
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---WEDGE

................ APPLIED LOAD

---------------------------------- METAL STRIPS

Figure 2. Pre-crack Configuration

The C-clamp holding the specimen was then mounted in
a vise, which was attached to a workbench. A travelling
microscope was positioned to view the crack tip. For best
results, the specimen face should be parallel to the
travel of the ten power microscope. In this way, it is
easy to follow the crack as it propagates to the desired
point.

A small screwdriver was then inserted in the notch
and gently tapped with a hammer. This wedge action caused
the crack to slowly propagate until it reached the area of
the applied load. By watching the crack growth in a micro-
scope the exact point of the crack tip could be determined
and marked with a thin pencil. The overall crack length

19

.................
---------------

gy S e R S




N was then measured and recorded for each specimen. These

. were also verified later on by the post-mortem examination
of the fractured surfaces after conducting the fracture

ég toughness test. This is described in the results section

n to follow.

@ Loading Apparatus

) A custom-made loading apparatus was fabricated for
the present study. It consisted of a rigid steel frame

E.? enclosing a moving platform. The platform is manually

raised and lowered by a screwjack mounted to the bottom of

s

the frame (see Flgures 3. & 4.).
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Figure 3. Three-Point Bend Platform
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_ Load Cell

~-Platform

~Screwjack

Figure 4. Loading Apparatus

The platform uses bearing sleeves and guide rods to
stabilize vertical travel. Attached to the moving platform
is a three-point bend configuration with the two lower
rollers set 1.5 inches apart. The top roller is glued to a
threaded stud attached to a load cell. The load cell is an
Interface Model SM-1000 with a range of 1000 1lbs. The load
is applied by raising the stage to the load cell using a
manually operated screwjack. The stage displacement and
load point displacement are monitored by a LVDT. The LVDT
is a Robinson-Halpern Model 225A-125 which has a range of

21
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+ 0.125 inches and an output of up to 2.19 volts at

2= T ¢~ -]

maximum range.

N H The outputs from the LVDT and load cell are fed to a
3 o two-channel Hewlett Packard X-Y Plotter. The resulting
S

’ plots of load vs. load point displacement can be used to
5 find the specimen compliance. The LVDT was calibrated to
4 ]

an accuracy of a thousandth of an inch and the load cell

Xy

was calibrated to a pound.

compliance Measurement

rEel

L
'
E Based on preliminary testing on some thin composite
D

specimens that were made previously, the approximate

P!

critical load was established for the tested specimen

3 «\’4‘
N configuration. By staying well below that load, the load

L/

[}

. E vs. displacement curves showed a linear relationship.

. Using the equation:

g

i |
)

C = v/P (1)

S where

| “:'5

¢

. :'E C = compliance

N

ﬁ v = load point displacement

'Y

IR P = applied load

‘

o

:;-“ The compliance was calculated for different crack lengths
4

'f E: from several identical specimens. Effective crack lengths
K were varied by testing specimens of varying initlal crack
L.
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lengths by moving the specimens on the bottom rollers (see
Figure 3.). According to Mall (18), the overhang portion
of a beam has no effect on the evaluation of G- This
technique allowed the testing of several effective crack
lengths on each specimen. To ensure minimum errors in
experimentation, each crack length was tested three times
and the compliance value was then averaged over the three.
Finally, to minimize the friction forces and closure
between crack faces, 0.012 inch metal rollers were
inserted in the notches during this measurement process.
Mall (18) suggested this technique to negate the
undesirable effects of friction in the region above the
support pin.

Each beam was inserted on the three point bend
platform and carefully placed perpendicular to the upper
loading pin. The specimen was then moved parallel to a
fine graduated metal rule attached to the platform. The
overhang portion of the beam was then measured. The
overhang portion is the length of beam from the point
above the lower support pin to the end of the specimen.
Mall (18) proved that only the area between the two lower
support pins effect the evaluation of GIIc' The amount pf
overhang was then subtracted from the actual crack length

to provide an accurate measurement of effective crack

length.
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o

;::o': E:.S The three-point bend platform was then raised until
AL

j%& the specimen was just below the upper loading pin but

still not touching. The Y-axis was set to zero on the X-Y

plotter. This gave the reference value for zero load.
Returning to the loading apparatus, the platform was

then raised until it touched the loading pin and a small

load was applied. The output of the LVDT was then checked

2

with a multimeter to insure that the readings were in the
linear range of the LVDT. If the readings were outside the

linear range, the LVDT was adjusted accordingly. Once the

SRR
=2 A

LVDT was properly aligned, the X-axis (the displacement

axis) of the X-Y Plotter was set to zero and the pen was

1

L

set to record.

The load was then applied until a previously

L,
-~
-
| — 3
-

determined displacement was achieved. The displacement

corresponded to an approximate load that was well below

LXK 5
=0

Ak the expected critical load. At the end of loading the pen
"He

‘.,:;; E{ was raised on the plotter and then the specimen was

b

Y

Qﬂ . unloaded. This cycle was completed three times before the
o IR

* .‘

R 7~ specimen was moved slightly and another effective crack
®

s i IS length was tested.

%b »

s Y, »

f}’ Finally, several specimens were run at varlious

effective crack lengths. This provided load vs. load point

o
[ AN

0.
. Yy displacement readings for effective crack lengths from
Y -.—‘
:3& . zero to half span of the beam. This also gave overlapping
D)
L Eg values of readings from the different specimens. The
L
qw, compliance was then calculated using the equation C = v/P.
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After all the compliance curves were generated, a
crack length was chosen and the specimen was loaded until
shear fallure occurred. The crack propagated towards the
center of the loading span. This process was recorded on
the X-Y plotter in the same manner as the compliance
measurements. It was during this phase that the laser
interferometric strain gauge was required to determine the
actual measurement of critical load at crack initiation.
Laser Interferometric Strain Gauge

The Laser Interferometric Strain Gauge (LISG) was
used by Sharpe (15) to measure displacements of less than
a micron. The LISG measures the relative displacement of
two small reference marks. The reference marks are made by
using a diamond micro-hardness indenter. The indenter
makes square based pyramids whose size is based on the
load used on the indenter and the material being indented.
Sizes of indents range from 20 microns to over 100
microns. Spacings between indents range from 50 microns to
800 microns based on the application (Ref. 15, 19, 20).

A laser acts as a coherent light source to illuminate
the indentations. The beam is reflected at an angle a off
the indentation faces. The reflected light from the two
closely placed indentations overlaps and forms a
interference fringe pattern on both sides of the incident

laser beam.

25




The application of load causes the specimen to deform
and the indents to move relative to each other. The motion
of the indent spacing and the fringe order is related by

the equation:

4d = mA /sina (2)

where
84 = change in distance between indentations
A = wave length of the light source
ém = change in fringe order
a = laser incidence angle

The wavelength of the helium-neon laser is 0.633
microns. The laser incidence angle is approximately 44
degrees, which i1s related to the geometry of the
indentations. The indent spacing was 300 microns prior to
loading.

Photo detectors are placed at fixed points to monitor
the fringe patterns and couﬂt the number of fringes
passing. By using a photo detector on each side of the
incident beam, the rigid body motion can be eliminated.
This is done by averaging the left and right fringe

number.
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Since the glass composite in this study was not very
reflective, tabs are required for employing the laser
interferometric technique.

Reflective Tabs

Two thin metallic tabs were attached to each
specimen. The tabs were laid across the pre-crack and
epoxied at two corners, diagonally across from each other
(see Figure 5). The two independent tabs were then
indented. The method of epoxying the tabs caused one tab
to move with the upper shear surface and the other tab to
move with the lower shear surface. The indents moved away
from each other horizontally. The movement of these
reflective indents was the quantity measured using the

LISG.

(M
N

X = GLUED CORNER
. = INDENT

Figure 5. Tabbling Method
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The reflective tabs were cut from a 0.004 inch thick

P 4 -

sheet of aluminum. Aluminum is highly reflective and is

also pliable enough to provide good indents and ease of

preparation at room temperature. At higher temperatures,

Iy
AL

platinum tabs have been used (12).

Using a razor, a rectangular plece of aluminum,

LS

approximately 0.2 x 0.1 inches was cut from the sheet. The

o
3; top of the rectangular piece was then marked. Using a
o hammer blow to a straight razor, this plece was cut in two
{
N
’ halves parallel to the long side. Figure 5 shows the two
@ tabs schematically, while Figure 6 shows a photograph of
the highlighted area.
%
™,
a Razor
Cut
Z~§
Epoxied
! Corners
?
&
" Fracture
:‘ Line
o0
&
~ — Indents
-
E Figure 6. Reflective Tabs

Magnified X25
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A 2.0 x 0.1 inch piece of cellophane tape was placed
on the shiny side of one of the tabs. The tape was rolled
back and epoxy was applied to the bottom of the tab. After
the tape was aligned, the tab was carefully placed near
the crack tip and the epoxy was pressed away from the
crack. The tape applied the needed pressure and the epoxy
was left to cure for two hours. The tape was then removed.
The second tab was carefully positioned on the composite
next to the first tab. The lower portions of the two tabs
were taped to the specimen. The exposed end of the first
tab was slightly curled up to separate it from the second
tab. The exposed end of the second tab was then carefully
epoxied. The second tab was taped to the specimen and left
to cure for two hours. After the epoxy had cured, all the
cellophane tape was removed. The tabs were then ready to
indent.

The two indents were generated using a 300 gram load
on a Wilson hardness tester and a pyramid shaped diamond
microhardness indenter. The resulting indents were
approximately 130 microns on a side and were spaced
approximately 300 microns apart using a precision stage

and microscope (see Figure 7).

29




.
>

=

~ v
PN
AP

o, ~

P4

L

T

Figure 7. Reflective Tabs and Indents

o Magnified 200X

‘ The resulting indent planes were angled at approxi-

mately 45 degrees to the incident laser beam when the

2

- specimen was perpendicular to the loading pin. The two

5_’: indents were illuminated by a coherent laser beam from a

N 10 milliwatt Helium-Neon laser (see Figures 8 and 9). The
'; two over-lapping reflections produced interference fringe
R patterns at four locations located at 45 degrees relative
}3 to the beam. Only the two reflections at the sides are

o important for horizontal motion.
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Figure 8. Schematic LISG Arrangement
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Figure 9. Actual LISG Arrangement
o
p
- 31
X
=




R

LR

[ "';'
€

v "l‘ _T

;'.:Y. s’

TN

¥s

T % s

ndadnm AN QST T
o 'c.'\'.'c.h ‘.'s 'n"".'n c"n“n n X e O "o h‘.' CRN 7™ s c. ..... h«o. a2 "“ hy

The fringe patterns (see Figure 10), were reflected
onto two photomultiplier tubes located 22 inches from the
specimen. The active face of the photomultipliers was
covered by a narrow slit 5 millimeters high, smaller than
1l fringe in size. The slit allowed distinction between
individual fringes. The use of two photomultipliers
negated rigid body motion by using an average value of
displacement between the two readers. An isolation table
provide adequate isolation from random vibrations of the

surroundings.
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Figure 10. Fringe Pattern Reflectlions
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Using equation (2), the displacement between the two
indents near the crack surfaces was found as a function of
applied load. This allowed for determination of the
critical load. The fringe information and load were input
to a Tektronix 4052 computer system through A/D con-
verters. The fringe information was used to determine the
relative displacement between the locations of the two
indents. The displacement was looked at in a qualitative
manner to determine the instant that the two crack facet
moved in shear. During the shearing process the relative
displacements changed abruptly from a stable linear load-
displacement relationship to a non-linear relationship.
The load at the point of change was identified as the

critical 1load.
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RESULTS AND DISCUSSION

Compliance

Seven of the end-notched flexure specimens were
tested to generate a crack-compliance relationship which

is required for G as discussed later. Each specimen was

Ilc
tested at several effective crack lengths by moving it
horizontally across the two lower roller supports. It was
very important to test each specimen as many times as
possible due to the limited availability of materials.
This technique provided multiple compliance readings for
crack lengths ranging from 0.0 inches to midspan at 0.75
inches. The compliance was found using equation (1).

Since the specimen height varied slightly among the
specimens (see Table III), the compliances were normalized
by the cube of the height. The normalized compliances are
plotted as a function of crack length in Figure 11. The
results show the expected trend of the compliance
increasing with crack length. Using the regression
analysis, a curve was fitted to the experimental data.

This is shown as a solid line in Figure 11 and is given as

follows:

C =1.646656 * exp(0.506834)a/w (3)

34

-

(A

|'0.. .t.t': N




T TR ~.mmmmmw

where
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Figure 11. Experimental and Analytical

o Compliance Curves
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Table 11I. Specimen Dimensjions

Half
Overall Helght Thickness Span
Specimen Length 2h b L
E, Number {inches) {inches) (inches) (inches)
e
T-11 1.984 .306 .202 .75
g! T-12 1.992 .295 .201 .75
T-13 1.984 .298 .201 .75
\ »
of
é& T-15 1.984 .300 .200 .75
iy T-16 1.992 .298 .198 .75
N
" T-21 1.984 .305 .203 .15
= T-24 1.953 .303 .199 .75
s
-
e
As mentioned previously, the end-notched flexure
7
specimen has been employed extensively to measure Mode II
. interlaminar fracture toughness, GIIC in composites. A
".
&. theoretical compliance relation has been developed by
! Russell (17) which is given below:
'y 3
M C=1+1.5(a/L) (4)
3
- 4E11b(h/L)
. This analytical relation was developed based on the
g simple linear beam theory. The present measured
g compliances were compared with the theoretical relation
@ given in equation (4). This is also shown in Figure 11.
s
N
b,
i; 36
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t_s All variables in the theoretical compllance
expression are known except for Ell' Young's Modulus, Ell'

‘ was calculated from equation (4) by using the experimental

S':: compliance for a crack length of zero. The calculated

o value of Young's Modulus was found to be 9.257 x 106

g pounds per square inch.

, The experimental and theoretical compliance relations

':E: are in reasonable agreement with each other up to a/w =

E_E .70, but they quickly diverged after that. This difference

- can be attributed to several factors, for example, the

§ small size of the specimen or the simple beam theory. The

, nature of the small size of the fibrous composite provided

SJ much higher compliances at midspan in the analytical

« representation than in the experimentation. A more

ﬁ appropriate analytical model needs to be found for use

E‘: with the small composite specimens.

! Fracture Toughness

& As stated, the objective of this study was to develop

ot a procedure, as well as to measure, the critical strain

E‘f energy release rate, GIIc’ for a fiber reinforced ceramic

‘ composite. Several specimens of the 1723 Glass

;ﬁ matrix/silicon carbide fiber composite were tested until

w fracture. A typical load-displacement curve is shown in

::: Figure 12.

-& All of the load-displacement curves are characterized
by an initial section of linearity. The linear portion
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extends past two hundred pounds of applied load. This

portion of the curve corresponds to the elastic

=,

deformation of the beam.

The linear portion of the curve was followed by a

b
g
nonlinear portion until the load ultimately dropped off as

‘ ? a result of fiber faillure. Based on observations during

N testing, it was thought that the nonlinearity was a result

?& of shear failure along the neutral plane.
*:E The critical load is required to £ind GII' Although
- shear fracture was evident during the nonlinear portion of
i gg the load-displacement plot, it was not possible to

visually observe the instant of fracture initlation. Since
visual observation could not back up our theory that

fracture initiation occurred at the point of nonlinearity,

R N

the laser interferometric strain gauge was employed.

’-
P: The laser was aligned so that the reflections from

! the two indents formed strong fringe patterns at angles of

o 45 degrees to the specimen surface. The photomultiplier

; ;: tubes were then positioned in the center of each fringe
% pattern.
ﬁ) During loading, information from the photomultiplier

tubes and the load cell was input to the computer once

SRR R

e every second. The voltage from the photomultipliers showed
. steadlly increasing or decreasing strength. By noting the
! v
H [

S local high and low points, the relative displacement was

;: measured to half a fringe.

.

-,
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Figure 12. Loading to Fracture
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During the loading process, the specimen provided a

strong fringe pattern until a point when the patterns

suddenly visibly degraded (see Figure 13). The loading

process was continued and the LISG still recorded fringe

L wn |
LS

information. The fringe intensity, however, had faded. The

rate of fringe movement also increased rapidly at the

point.

o,

EE 2.500
O 2.000}—
e 00 .
—J
E.; O
. Ei 1.500— —]
?ﬁ W
€8] 1.000 —]
<<
_ — J
b i |
) 0.500+— u —
I! >
) 0.000 | l |
V' 0.000 30.000 60.000 90.000 120.000
&
L)
TIME (SEC)
. Figure 13. Fringe Readings
0y
Ve
? The sudden degrading of the fringe pattern was
g

believed to be the point of rapid shear fallure. The data
from the LISG was plotted and the average fringe motion

was converted to a relative displacement (see Figure 14).
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Figure 14 shows the displacement between the fracture

surfaces of the beam. Like our previous load displacement
curve, there is initially a linear relationship between
load and displacement. At a load of 225 pounds the
relationship becomes nonlinear. At this point, the rate of
displacement between indents increased greatly. This trend
is consistent with the rapid shear failure of a brittle
material.

The load of 225 pounds was only three pounds lower
than the point of nonlinearity on the load-load point
displacement curve. This backs up our theory on critical
load . The point of nonlinearity from all the load-load
point displacement curves was then used as the critical

load in the calculation of G

I1lc’
400 .000
| | |
3%0.000}—
. 300.000}— _—
wn
M 2%0.000— —
d
200.000}— -
0O
< 1%0.000f— —_—
o
—  100.000}— —
%0.000}— —
0.000 I J |

0.000 2.000 4.000 6.000 8.000

FRINGE NUMBER

Figure 14. Relative Displacement of Shear Plane
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Critical Enerqy Release Rate

The instant of crack initiation was taken at the
point of nonlinearity as described earlier. The values of
critical load, that were required for the calculation of

the strain energy release rate, were now avallable. A
chart of critical load vs. crack length was prepared (see
Figure 15). Finally, an analytical and an experimental
value of the strain energy release rate was calculated for
each of the fractured specimens. The analytical energy
release rate was based on the earlier theoretical
compliance expression and the simple beam theory. The

analytical equation used was (17):

_ 2_2
GII = 9P " a (4)
2 3
16b Ellh
where

P = load
a = initial crack length
b = specimen depth
Ell = Young's Modulus
h = specimen height
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Figqure 15. Critical Load vs. Crack Length

B

The critical strain energy release rate was

E
. calculated using the expression:
&~
- _ p 2
- GIIC = (Pc /2B) (dC/da) (5)
The value of dC/da was found from the derivative of
the compliance curve that was plotted earlier (see
7 Figure 11).
b
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The critical strain energy release rate was

calculated for each crack length and compared to the

corresponding value obtalned from the analytical value of

G (see Table 1IV).

II
Table 1V. Mode I1I Fracture Toughness
G G

Crack Critical Experi- Theore-
Length Load mental tical
(in) {lbs) (1b/in) (1b/in)
.1405 268.8 2.165 4.860
.5625 228.1 2.114 7.410
.563 234.4 2.233 7.839

The experimental values of GIIc were within five
percent of each other. This was an expected result if the
critical strain energy release rate was a material
property. Since the values were so consistent, it glives an
indication that the test was conducted properly and that
the assumptions that were made were correct.

The analytical values of G however, not only

1r’
differed from the experimental results, but also differed
greatly from each other. Both the theoretical expressions
for compliance and strain energy release rate are based on
simple beam theory. For small specimens and small crack
lengths simple beam theory is not accurate. Other
relationships have to be developed for the small specimen

using finite element analysis or another analytical

method.
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Fracture Surface

After the fracture tests, the fracture surfaces were
examined under a microscope at varying powers up to a
maximum magnification of 200X. The specimens had already
fractured up to the midspan loading point. To view those
fracture surfaces, the remaining half of the neutral plane
was separated using a Mode I type pulling force. This left
a fracture surface that could be divided into four general
sections: the notch, the pre-crack, the shear fracture,

and the Mode 1 falilure (See Figure 16).

PRE-CRACK MODE I
—x¥ h—K —
NOTCH SHEAR
FAILURE

Figure 16. One Fracture Surface

(Top View)
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The area of the notch was evident in the photographs

(see Figure 17). It showed the effects of the diamond
grinding that resulted from the use of the diamond wheel.
The notch and the pre-crack show a dramatic change in
surface. The pre-crack had a smooth planer surface that
continued until it blends into the area of shear failure.
There was very little difference between the pre-crack and
Mode II fracture. The two ran in the same plane. The
surfaces were smooth with relatively few instances of
fiber pull out.

The similarity of the pre-crack and failure gave
another indication of a good test, since the pre-crack
gave the appearance of a natural fracture. The fracture
plane was evidence of pure brittle fracture without
ductility. The probable failure mechanism was in the fiber-

matrix interface or in the matrix itself.
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Figure 17. Fracture Surface - Mode II

Diamond ground notch (left), and

Mode 1I surface (right).

The area of Mode I fallure was not as smooth as the
first half of the specimen (See Figure 18). The Mode I
surfaces exhibited much more destruction to the fibers

than was evident in the Mode II fallures.
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Figure 18.

Fracture Surface - Mode I

Magnification 15X
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CONCLUSIONS AND RECOMMENDATIONS

The initial objective of this study was to develop a
technique that could be used for fracture toughness
testing of small composite specimens. The technique was to
be developed so that it could be modified for use at
elevated temperatures. Finally, this technique was to test
some ceramic matrix composite specimens. Based on the

completed test, there are several conclusions to be made:

Conclusions

1) A test method for finding the critical strain

energy release rate, G for a small ceramic matrix

Ilc’
composite specimen was developed.
2) The end-notched flexure specimen is a viable
specimen for Mode II testing of small composite specimens.
3) The LISG provided the instant of crack initiation,
which corresponded to the point of nonlinearity on the
load-displacement curve.

4) G was found for the 1723 glass matrix, silicon

Ilc
carbide fiber composite.

5) The analytical expressions for compliance and
strain energy release rate need to be modified for use

with small composite specimens.
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Recommendations

Based on this study, some recommendations of further
study can be made.

1) Replace the manual loading device with a finely
adjustable, automated loading device. An automated device
such as an MTS would allow for much smoother loading
rates, loading control and displacement control. It would
also allow for cyclic loading, which 1s needed for fatigue
testing. This would alleviate many of the short comings of
our present experimental set-up.

2) Improve the existing computer program or write a
new program that would allow for more rapid acquisition,
more input variables, and varied output. For the rapid
fallures assoclated with brittle glasses, data needs to be
acquired more than once a second to accurately measure the
fracture growth. The present software can only collect
data once a second. Also, our technique uses load point
displacements versus loads to f£ind specimen compliances.
The present computer program was not designed with
compliances in mind or GII in mind.

3) Apply this technique to other modes of fracture.
Other composite orientations could be used to investigate
Mode I or Mixed Mode I and II.

4) One large area of further study would be to apply
a variation of this technigue to high temperature

applications. The LISG and tabbing have been applied to
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temperatures up to 1400°C. This work was applied to Mode I
fallure, however, and could now be expanded to include

Mode II fracture. This would involve major changes in

material and equipment.
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APPENDIX A

The composite used in this study was manufactured at
the Alr Force Materials Laboratory, Wright Patterson AFB.
Larry Zawada (ref. 37), an engineer in the Materials
Laboratory provided the direction for the composite
fabrication which was based on general concepts worked by
Karl Prewo and others (ref. 7-9, 28-36).

Materials

The basic components of the composite are an
aluminosilicate glass frit, a binder solution, and the
silicon carbide yarn. The glass frit consisted of a 1723
Corning amorphous glass mixture which comes in the form of a
finely ground powder. The R Hoplex Binder was in the form of
a liquid. The silicon carbide fibers were in the form on a
Nicalon yarn manufactured by the Nippon Carbon Company of
Tokyo.

The composite was manufactured by the hot pressing of
multiple layers of infiltrated unitape. The process of
making the unitape begins with the mixing of a liquid
slurry. The slurry is composed of a mixture of glass, binder
and water. The specific combination used was:

80 grams 1723 Corning Glass Frit
210 milliliters Distilled Water

90 milliliters R Hoplex Binder
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wWinding

After the slurry has been well mixed, it was used to
coat the silicon carbide yarn. The slurry-impregnated yarn
was then wound on a mandrel to form unidirectional tapes

(see Fligure 19).

TAKE-UP SPOOL SLURRY AIR JETS FURNACE YARN SPOOL

Figqure 19. Winding Process

The winding process was performed manually and each
four hour winding produced eight four inch wide plies. The
winding was performed by mounting a spool of silicon carbide

yarn on a roller at one end of a long work table. A single

strand of silicon carbide yarn was gradually pulled through

e 53
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- a hot furnace set a 600 degrees centligrade. As the yarn was
a pulled through the furnace, a protective coating was burned
from the yarn. This left only the silicon carbide material
g itself. The uncoated yarn was then directed over a set of
H alr jets. The alir jets teased the strands of yarn and
N loosened the bundles of fiber. The loosened yarn was then
‘: run through a beaker of the slurry. The slurry was kept
= constantly agitated by a magnetic spinner located at the
;,:-’ bottom of the beaker. The agitation insured a constantly
o uniform mixture within the slurry and also insured a well
X impregnated yarn coming out of the slurry. The yarn was then
Q: carefully wound on a slowly rotating mandrel. The mandrel
" was in the form of an octagon with four inch by six inch
ﬁ faces. The slurry impregnated yarn was continuously wound on
.. the mandrel until a four inch wide tape was formed. The tape
kj was formed by multiple parallel windings of yarn with a half
. diameter overlap on each winding. As the winding progressed,
] the yarn was gently flattened to ensure that the individual
Ei strands of yarn became sufficiently meshed together. A
heating lamp was used to slowly dry the newly formed tape on

? the rotating mandrel. The binder dried to form a rigid tape
= of fiber and matrix.
" Once dry, the unidirectional tape was cut from the

: % mandrel. Each of the eight faces on the mandrel provided a

: '- single rough ply approximately four inches by six Inches in
Z
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size. These rough plies were then cut into smaller plies

using a paper cutter. Depending on the final specimen size

desired, each rough ply was then cut into four, two by two

«
TR

inch plies or one, four by four inch ply. Each finished ply

Lt

was visually inspected to insure the gquality of the tape.

!: These ply sizes were determined by the molds used in the hot
Qe pressing. The specimen thickness was determined by the

* number of plies stacked together during hot pressing. It

? took forty plies to achieve our 0.2 inch thick specimen.

" Hot Pressing

& To make our final unidirectional sample forty plies

were stacked in a special graphite die. The inside of the
die was lined with tantalum foil to prevent sticking.

Molybdenum foil was placed on top of and below the forty

plies also to prevent sticking. Finally, graphite plungers

¥ r
rarar

were placed in the die and the layers were compacted in a

vice.

) The graphite die was then placed in a hot press and a

thermocouple was inserted into the upper plunges. The hot

v v
v
LMY

press was gradually heated to 800 degrees centigrade and the

E ]

pressure was increased to 500 pounds per square inch. During
this time the binder was burned off and any excess gases

escaped from the die. The composite was then rapidly heated

o to a temperature of 1100 degrees centigrade and the pressure
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was increased to 1800 pounds per square inch; the composite
was held at this final state for ten minutes and then
gradually cooled.

The whole process took five hours with constant
monitoring by an engineer. The hot press temperature,
pressure, and ram displacement were recorded every ten
minutes during the run. The engineer looked for trends in
the relationships between displacement and temperature based
on previous hot pressings of this ceramic composite. This
provided one measure of Qquality control during the
fabrication process.

The result of the process was a four by four inch
square that was 0.2 inches thick. Surface quality was good
and fibér distribution was good (see Figure 20) with about
50 percent volume of fiber. The photograph shown in Figure
19 was taken of a cross section at the center of the four by
four inch composite plate. The volume of fiber was calcu-
lated from the fiber surface visible in a photomicrograph of

the composite.
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Appendix B

After the compliance measurements were taken, five

RS specimens were loaded until fracture. The load vs. load
point displacement curves are included in the following
N pages (see Figures 20-24). It was difficult to visually
i: determine the exact point of shear failure; therefore, the
> load-displacement curves were used to determine the critical
' E“i load at which the shear fracture propagated.

Each curve exhibits similar trends. Initially, the load-

s

displacement relationship was linear. At a certain point the

curves deviated from the initial course and became

T

nonlinear. Finally, the load dropped off.

The point of nonlinearity determined the critical load.

=~

1t can be seen that the load at the point of nonlinearity

'c'.-. h

decreases with increasing crack length.

»
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X
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N Appendix _C

Computer Progqram

ﬁ: The following computer program was written by Jay Jira

of the Air Force Materials Laboratory (AFWAL/MLLN), for use

i with a laser interferometric strain gauge. The program was
o run on a Tektronix 4052 computer with an auxiliary memory.
t; The program recorded the output voltages from the two photo-

Kk |

multiplier tubes and the load cell. The program allows the

’ : £
L}

user to input information about the specific operating

parameters of the equipment and the desired data reading

| )

rate. The input voltages were then converted to the

T

appropriate units and were recorded in memory. The computer

v

program processed the load and fringe information into the

form of relative displacements. It was then possible to

- —y -
e
s

select various plots of load, displacement and time.

LN

-
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"
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